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Transmission delay times of localized waves
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We investigate the effects of wave localization on the delay tintrequency sensitivity of the scattering
phase shift of a wave transmitted through a disordered waveguide. Localization results in a separagon
+ x' of the delay time into two independent but equivalent contributions, associated to the left and right end
of the waveguide. FoN=1 propagating modeg, andy’ are identical to half the reflection delay time of each
end of the waveguide. In this case the distribution func®{m) in an ensemble of random disorder can be
obtained analytically. FON>1 propagating modes the distribution function can be approximated by a simple
heuristic modification of the single-channel problem. We find a strong correlation between channels with long
reflectiondelay times and the dominant transmission channel.
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[. INTRODUCTION value 7, that increases with the system length—even though
In this paper, we characterize localization of randomlythe tail is irrelevant for the direct experimental or numerical
scattered waves by means of a dynamical quantity, the delapvestigation of the distribution itself, it is reflected in physi-
time 7. cal properties of mesoscopic systeffr a review see Ref.
Wave localization is perhaps the most striking effect of[28]). Reference[27] also addressed the properties of a
multiple random scatterinl—4]—in a waveguide geom- delay-time weighted by the transmission coefficient, which is
etry, it results in the exponential attenuation of the transmitrelevant for the conductance of mesoscopic wires.
ted intensityl (L) <exp(—2L/¢) for lengthsL of the wave- In this work we investigate the distribution of the trans-
guide greater than the localization lengéh even in the mission delay timer in the localized regime. It will turn out
absence of absorption. Localization was first investigated ithat the transmission and reflection problem are closely re-
mesoscopic systen|{®—7]. Recently the undertaking of its lated forN=1. The transmission delay time is then the mean
realization and observation for microwaVés9] and optical ~ of the reflection delay times of the both ends of the wave-
waves[10] has attracted a lot of interest. It is still under guide, and the exact form of the limiting distribution func-
debatd 11,12 whether some of these observations are due téion P(7) for L—o can be found analytically. At finite
localization or absorption. length the result is applicable in the range8<r.. Be-
The delay timer=d¢ /dw is the frequency sensitivity of causer, is very large in the localized regime, this covers the
a scattering phase shift, and has been identified by Wigner range of delay times that is relevant for direct experimental
[13] as a measure of the exploration time of the scatteringpbservation and comparison with numerical simulations.
region(see also Ref$14,15). Recent experiments have suc- For N>1 there is still only one relevant transmission
ceeded in the direct measurement of the so-called singleshannel. Consequently, once again localization results in a
mode delay time for specified incident and detected modeseparation of the transmission delay time into two indepen-
both for microwaveg16] and optical wave$17]. (The at- dent but equivalent contributions from both ends of the
tribute “single-mode” means here that only one of tNe  waveguide. Moreover, one of the contributions only depends
propagating modes is excited, and only one mode is selectegh the excitation mode, while the other only depends on the
for detection, but does not imply any restrictionMfitself.) detection mode. However, the transmission delay times are
These experimental efforts have promoted the single-modeo longer directly related to the reflection delay times. Nev-
delay times to quantities of interest in their own right. Theertheless it is possible to obtain the distribution function of
measurements have been performed with waveguides shorteingle-mode delay times approximately by a heuristic modi-
than the localization length, and their outcome can be sudication of the single-channel problem.
cessfully described by diffusion theof{8]. That does not Although there is no direct relation to the reflection prob-
mean that wave localization is of no interest in this context—em for the individual single-mode delay times ahd>1,
note that the experiments on localization and delay timeshere exists an intensity-weighted combination of all delay
have been performed on the same sorts of sample, by thémes that is more closely related to the reflection problem.
same groups. This combination involves the orthogonal transformation
Theoretical work on the localized regime has mostly con-matrix from the basis of transmission channels to the eigen-
centrated on the delay times of the reflected sigh@+26§.  vectors of the Wigner-Smith time-delay matrix. From our
Some aspects for the transmission delay-time problem for aumerical simulations we find a strong correlation of the
single propagating channel& 1) have been studied in Ref. dominant transmission channel and the channel with the larg-
[27], where it was found that the distribution of has a  est Wigner-Smith delay time.
universal quadratic tailP(7)=7 2, for large . This tail The paper is organized as follows. In Sec. Il we provide
eventually crosses over into a log-normal tail, at some largéhe necessary background material that will be used later on
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mental practice these modes can be chosen as plane waves
with discretized propagation direction, and mode selection is
realized by the choice of the positions of source and detector.
In such a single-mode experiment, the waveguide is probed
by external illumination with amplitud& ,, in modem, and

the transmitted or reflected signél,,, is detected in modae,

¥ with nm=1,... N. (The modes with indexn,m

o p =1, ... N are associated with the left end of the waveguide,

) ) ) o . while the remaining modes pertain to the right end of the
FIG. 1. Quasi-one-dimensional waveguide filled by a d'sordere%aveguide). The numbers

medium and illuminated by a monochromatic plane wave. The scat-

tered wave acquires a scattering phase shifive investigate the Si=P o/ ¥, (1)
frequency sensitivity(delay timg 7=d¢/dw for the transmitted

wave. form the elements of theNx 2N scattering matrix

in the investigation of the transmission delay times. This rot

includes a short review of the diffusive regime and the re- S=( ,), 2
flection delay times in the presence of localization. In Sec. IlI tr

we discuss the casé=1 of a single-channel waveguide and
calculate the distribution function of the transmission delay
time analytically. Section IV is devoted to waveguides with
more than one propagating channel. We will first discuss th

‘with four NXN dimensional blocks that correspond to re-
flection or transmission with the incident radiation from the
éeft (r, t) or from the right ¢', t'). The scattering matrix

& unitary due to flux conservation in the absence of absorp-

single-mode delay times and compare the distribution from d onlv d d ¢ b h
numerical simulation with the analytic expression that ariseé'on} and only depends on one Irequency because there are
no inelastic processes. Furthermore, the scattering matrix is

from the heuristic approximation. Then we turn to the e d ; | hentet"
weighted combination of all delay times and use it to inves-syrﬁmaer;[gﬁ,_ureﬂto time-reversal symmetry, hemtet’, r

tigate the relation of the dominant transmission channel with— r

the channel associated to the largest reflection delay time. A useful representation of the scattering matrix is the po-
lar decompositio 7]

II. BASIC CONCEPTS ut o \/ﬁ ﬁ u O
A. Waveguide geometry S= 0 oT NNy
Figure 1 depicts a quasi-one-dimensional waveguide

(length L much larger than the widhthat is filled by a  with unitary matricesu and v and the diagonal matriz-
medium with randomly placed scatterémsean free patth). =diag(T4, ...,Ty) of transmission eigenvaluggigenval-
We assume that there is no absorption and no inelastic scates oft't). For convenience we order them by magnitude,
tering inside the waveguide, and consider a monochromati€;>T,>--->Ty.
scalar wave(disregarding polarizationfor simplicity. Also
we assume that time-reversal symmetry is preserved, as is C. Intensity and delay time
appropriate for the propagation of light in absence of
magneto-optical effects.

The numberN of propagating modes at frequeney _ :
equals the number of transversal excitations inside the wave- Som= nm €X(i i), @)
guide, and is given byN=mA/\? for a waveguide with
openings of aread (here\ =c/w is the wavelength andis
the propagation velocity of light In the numerical simula-
tions we will work with a planar waveguide of widtiv
<L, where N=2W/\. For a unified description we intro-
duce the scattering time/=al/c, with the coefficienta dé ds,
=2 (w24, 8/3) for one-dimensional(two-dimensional, Tam=—— =Im S, 1" (5)
three-dimensional scattering inside the quasi-one- do do
dimensional waveguide, and the relative lengtha'L/I,
with «’=1/2 (2hr, 3/4). The localization length is then
given by é=(N+1)l/a’.

N &)

v

The elements of the scattering matrix can be written as

wherel ., is the detected intensity for unit incident intensity
and ¢, is the scattering phase shift. The single-mode delay
time is defined as the derivative of the scattering phase shift
with respect to frequency,

Its interpretation as an exploration time of the medium stems
from the short-wavelength limit. The phase can then be ap-
proximated by the classical actid®, of trajectories(there
may be severalthat satisfy the boundary conditions of the
incident and detected modes. According to classical mechan-

The numberN of propagating modes inside the wave- ics, the derivatival S /dw of the phase with respect to fre-
guide corresponds to the number of independent inciderquency (energy equals the classical propagation time
modes close to each opening of the waveguide. In experithrough the medium.

B. Scattering formalism
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D. Ballistic case modem and within a given disorder realizatigfixed T;),

In the ballistic regimes<1 the wave is transmitted with- thiS results agair12 in the Rayleigh distributi¢6) for Ip,
out any attenuation, and the modes can be chosen easily sutfh (I)=Tilvim|". If one also averages over the incident
that each incident mode is strictly associated with a trans- Mode, however, one finds
mitted moden’(m), namely, by using the reflection symme- PING
try of the waveguiddexchanging left and right The inten- P(lhm) = —Ko(2NVI o/ T1), (10)
sity is then given byl ,,,= 8, , and the delay time s, Ty
= é,nL/cy,, Wherec,, is the longitudinal propagation veloc-

ity in modem. The average over all modes(is/c,) = ys with K, a modified Bessel function of the second kind. This
. m :

deviates from the Rayleigh law, obviously because the cen-

tral limit theorem no longer holds due to the large relative

differences between the transmission eigenvalues. The re-
Diffusion theory applies when the lengthof the wave- flected intensitied ,,,, however, still follow the Rayleigh

guide exceeds the mean free phthut is less than the local- distribution with (I1)=1/N, since they are governed by the

ization length&. The fluctuations of the intensity,,, for  nonfluctuating reflection eigenvalug=1—T,~1.

given m and varyingn result in a speckle pattern of bright =~ Because transmission becomes negligible, the reflection

E. Diffusion theory

and dark spots, which is described by the Rayleigh distribumatricesr =uTu andr’=—v v become unitary. The single-
tion mode delay times of reflection can then be related to the
1 Wigner-Smith delay times;, 7/ , which are the eigenvalues
P(lym) = <I_>exp(_ Lam/{(1)). (6)  of the Wigner-Smith matrices
o . - o dr du’
The mean intensity per mode )= (T)/N in transmission gq=—ir Td_w: u*( 2 Imu* d_w) u,

and(l)=(1—(T))/N in reflection, wherg7]
1 r— err, T *dvT
<T>=N<trtTt>=(1+s)’l (7) q=-—Ir E—U 2 Imv E v, (11)

is the mean transmission probability. For the special case fespectivelyfor details of the relation refer to Ref24,25).
=m in reflection the mean intensity doubles due to coherent The two sets of Wigner-Smith delay times are indepen-
backscattering29]. The speckle pattern can also be under-dent and equivalent. In terms of the rajes= 7, 1 the joint
stood from the uniform distribution of the matricasandv distribution function is given by the Laguerre ensem{28]

in the group of unitary matrices ™). For largeN, the ele-
ments ofu andv can be considered as random Gaussian
numbers with variance(|u;m|?)=(Jv;m|?)=1/N, and the
Rayleigh distribution6) follows from the central-limit theo-

P({Mi})“iﬂj |Mi_Mj|1_i[ O(pe YNk (12)

rem. where the step functiof (x) =0 for x<0 and®(x)=1 for
The distribution function of the delay time is given by x> 1. Equation(12) generalizes earlier results fbir=1 [19—
[16,1§ 22] to arbitraryN.
0 We order the delay times by their magnitude,>7,
P(7m) == [Q+ (Tom/(T)— 1)2] 32 (8) > ...>7y. Of special interest is the largest delay timg
2() which is known to dominate the statistics of the reflection

delay timeg[24,25, although to a lesser extent thdp de-
termines the transmitted intensity. Its distribution follows
from a result by Edelman30] for the smallestu in the
Laguerre ensemble and is given by

In transmissionQ=2/5 and( )= ys?/3, while in reflection
Q=2s/5 and{7)=2ys/3 (for ballistic corrections in reflec-
tion, see Ref[25]).

F. Localized regime YN(N+1)

In the localized regimé& = ¢ the transmission eigenvalues P(71)= 72 exf — yYN(N+1)/7,]. (13
T, become exponentially small, with well-separated, self- !
averaging exponents—(InT,/L=2n/& Transmission is ~ . . .
dominated by the transmission channel with eigenvalye The Tean<71> diverges bec_ause of thg quadratic tail for
which is exponentially larger than all the other transmissiorfa’ge 71. These large fluctuations are a signature of localiza-

of the localized regions deep inside the waveguide. Our re-
thm= VT10 1nU1m= nm=T1|v 1nU1ml % (9)  sult for the transmission delay time will support this inter-

pretation: We will see in Sec. IV D that the corresponding
For largeN the complex numbers;, andu;,, again can be eigenvector of the Wigner-Smith matrix is correlated with
considered as Gaussian random numbers. For fixed incidettie dominant transmission channel.
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Ill. SINGLE-CHANNEL WAVEGUIDE T T T T

The distribution of the transmission delay timg, for a
single propagating modeN(=1) has been investigated pre-
viously in Ref.[27], where it was found tha®(r;,)> 7,,> for
large 715. In this Section we will calculate the distribution :
function analytically, for allry,. 0.05 - y

For N=1, the scattering matrix is a>22 matrix, hence I . . . . '
the transmission and reflection elements-uv T, r T
=u?J1-T, andr’'=—-0v2J1—T reduce to complex num- Tl
bers, while the matrices, v, of the polar decomposition are

now unimodular complex numbers. The single-channel case FIG. 2. Distrit_)ution of transmission delay timefor a single-
is special because the transmission delay time channel waveguide. The analytic res(@1) (curve is compared
with the results of a numerical simulation of random scattering in a

single-channel waveguide.

0.15 - 1

01 4

Pty

u dv mt7
7'12=|mu_1d—+|mv_ld—= 112 221 (14)
@ @ In Sec. IV B we will propose a slightly modified version of
is directly related to the reflection delay times this equation for the Cm?lz _
From Eq.(19), the distribution of the transmission delay
_dr _,du time 7,= x+ x’ is then found by integration,
T11—|mr E—Zlmu %, (15) yg
712
, P(ri) = | e~y ()]
,_ldr —1dv 0 X( 71— X)
Too=Imr’' " *—=2Imv "—. (16)
do do 2
4 2y 2y 2y
. . ) =4—exp — — || Kol — |+t K| —] | (21
The relation holds for all lengthgt does not require local- 5, T12 T12 T12

ization), and can also be derived from the condition of uni-
tarity of the scattering matrix, In Fig. 2 this prediction is compared with the result of a
numerical simulation of random scattering in a planar single-
channel waveguide. In these simulations the Helmholtz
equation is solved on a square lattice. In terms of the lattice
constanta, the width of the waveguide i%V=3 a, and the

It is convenient, also in view of the cad¢>1 to be wavelength is\=4a, giving rise to a single propagating
discussed in Sec. IV, to introduce the quantities mode. Disorder is modeled by a random on-site potential,
with localization lengthé =41 =54a. The scattering rate is
determined from the ballistic regime. We find perfect agree-
ment between Eg21) and the numerical simulations, with-
out any free parameter.
In the localized regime, the reflection delay times are deter-

d
re* +tr’'*=0=—(rt* +tr’'*)=0. (17)
dw

du dv
X=Imu’1%, X’=|mvil%. (19

mined by scattering in nonoverlapping region_s close to each IV. MULTICHANNEL WAVEGUIDE
end of the waveguide. Hengeand y’ become independent,
and their joint distribution functiorP(x,x’)=P(x)P(x’) Now we turn to the cas®l>1 of more than one propa-

factorizes. The reflection delay times;=2y, 7,,=2x’  gating mode in the waveguide. We first show that the delay
equal the Wigner-Smith delay timés , ~Ti, respectively. times separate into two independent contrlbutlons_an_d d_|s—
The function cuss some consequences. Then we turn to the distribution
function P(7,,) and propose an approximation, based on a
heuristic modification of the cadd=1, which agrees well

P(x)= lzexp(— YIx)O(x), (19 with the result of numerical simulations. Finally, we investi-
X gate the correlation between the transmission channel with

eigenvalueT, and the eigenvector of the Wigner-Smith ma-

[and equivalentlyP(x')] hence follows from the Laguerre trix with eigenvaluer,.

ensemble, Eq(12), for N=1. The derivation in the frame-

work of one-dimensional scaling theory is briefly recapitu- .
lated in Appendix A.P(x) eventually is determined by the A. Separation rule

requirement that it becomes independent of length in the For the transmitted intensity it is sufficient to consider the

localized regime, which results in the stationarity condition reduced formt,,,=v1,U1mvT1, EQ. (9), of the transmission-
matrix elements in the localized regime. Under the additional

Cﬁzi(_ 9 2lp—p (20  assumptioriwhich is validated by the numerical simulations

laFTS ax 4 aXX ' that the coefficients,,,, Um. k#1, do not depend much
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more sensitivelyby large factors<e/¢) on frequency than
the elements ,, andu,,, this form can also be used for the
delay times, which then separate into two contributions,

Tnszm+Xr,1! (22
1 dulm , 1 dUln
Xm—lmm do )(n—|mv—1n do (23

The contributiony,, only depends on the mode index
of the incident mode, whilg,, only depends on the detected

PHYSICAL REVIEW E64 026606

0.3 T 1 1 1 T 1

<
(%

P(t,,) N(N+1)y
<)

[ N(N+1)y

Tnm

moden. This gives rise to strong correlations between the FIG. 3. Distribution of transmission delay time,,, for multi-
delay times for each disorder realization: They obey the rechannel waveguides witN=2 (open doty andN=230 (full dots).

lations
Tij+Tk|:Ti|+Tkj' (24)

The dependence on the mode indices suggestsythad

The analytic prediction from Eq29) (curve with Y=Z=yN(N
+1)/2 is compared with the results of a numerical simulation of
random scattering in a planar waveguide.

length (“stationary”) for L>¢, because the distribution

x' are independent and equivalent, and that they are detep(y,,) for length L is identical toP(xy ) for length L,
mined by scattering within a couple of localization lengths <, and analogously fox, .

close to the associated opening. This is also suggested by the The stationary distributio®(7) is plotted in Fig. 3, for

fact that x,, only depends on the matrix, while yx,, only

depends on the matrix. These matrices, on the other hand,

determine the reflection matrices=u™\/1—7u~u'u and

N=2 andN=30 propagating modes in the numerical simu-
lations (corresponding to different widthgv of the wave-
guide. The distributions collapse onto a single curve when

r'~—uv'v, which can be considered as independent in thehe delay times are rescaled by a facidt(N+1). The dis-

localized regime(The approximationi7=0 corresponds to

tribution is however qualitatively different from the result for

neglecting the influence of the opposite end of the waveN=1. Most notably, a taib 7,7 also extends into the region

guide, which is far away However, that might be
deceptive—note that althoughandv giver andr’, they are
themselvesiot uniquely determined by andr’ in this ap-
proximation: e.g., the same reflection matrixcan be ob-
tained fromou, with o an arbitrary orthogonal matrix. The
matrix u can only be determined uniquely fromf we also

of negative delay times, while the delay times fb+=1 are
strictly positive.

An analytic treatment of the transmission delay-time
problem for many channels is notoriously difficult. In the
framework of one-dimensional scaling theory, the evolution
of x couples to all elements efanddu/dw, which makes a

use the information in, which depends on the opposite end complete analytic solution impossible. Inspection of the

of the waveguide. We will demonstrate now thatand x’,

complicated full set of evolution equations that appear in this

nevertheless, become independent in the localized regimepproach, however, suggests the following approximation for
However, in Sec. IV C we will see how degrees of freedomthe stationarity requirement &(y):

which are similar in nature asreflect in the statistical dis-
tribution of the delay times.

In order to demonstrate thgtand y’ are indeed indepen-
dent, we cut the waveguide into two pattssociated with
subscriptd = 1,2), still requiring that the lengths;>£. The
well-known composition rule

t=ty(1-riry) 'ty (29

and the relations % T,;>T,.,; yield
thm="01n2U1m 1V T 1, (26)
T1i=T1 T AL (U vi+upv]) 2 27

Note thatT, is indeed real. This gives,n=xm1t+ xn2. i-€.,
Xm=Xm1 independent on part 2 ang,= x,, , independent
on part 1.

B. Distribution of delay times

—Y+i( 2+7%) |P(x)=0 (28)
Ix X X )
with the solution
Y exd (Y/Z)arctartx/2)]
P(x)= . 29
= 2 22 st mvi2z) 9

For Y=y andZ=0, the stationarity condition reduces to
Eqg. (20) for N=1. For N>1, the appearance & can be
traced back to the additional degrees of freedom in
u'du/dw, especially also to the real part of this matftke
real part vanishes foN=1). This will be further discussed
in the following two subsections IV C and IV D. The factor
Y/Z in the exponent of Eq29) determines the asymmetry of
the distribution for positive and negative valuesyof

The full set of evolution equations suggests tiatZ
=+yN(N+1)/2, up to numerical factors that cannot be de-
rived without solving the original problem. This is also the

The considerations in the previous Sec. IV A also showorder of magnitude ofr,,, at the border of diffusion and

that the statistical distribution of becomes independent of

localization, see Eq8). In Fig. 3 we have plotted the distri-
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bution of 7=y+ x’, which follows from Eq.(29) for Y - T doT
=yN(N+1)/2 andZ=yN(N+1)/2. The comparison with 0257 02p=2 IMv* =, (36)
the numerical data shows that the numerical factors are close

to unity.
~ 1 ~ T du™ dv* T
0,1701,+ 04,7 01,= Re \/?u*%ﬂL oY VT ).

C. Relation to the reflection problem

(37

For N=1 we could relate the problem of transmission

delay-times directly to the problem of reflection delay times. ) ) ) ]
Now we discuss to which extent these two problems aréomparison with Eq(11) shows thab,; ando,, diagonalize

linked for N>1. the Wigner-Smith matrices of the reflection problé®ec.
Due to its symmetry, the scattering matrix can always bd! F), however, in the special basis of transmission channels
written asS=UTU. In terms of the matrices of the polar that is not fixed by reflection alone. The matricgs ando,,

decomposition, we can choose are related to frequency derivatives wfandv that do not
feature in the reflection problem at all. Moreover, because

(T12p)Yu (pl2)Y% they appear as off-diagonal elements @f these matrices
I( —i(p/2)1’2u i(T/Zp)l’zu)’ (30 connect the coefficients of the transmission channels from

one side of the waveguide to Wigner-Smith eigenvectors of

with p=1—1—7. In the localized regimey can be ap- reflection from the other side. _
proximated by According to Eqs(35) and(36), the eigenvalues d can

be approximated by the two sets 7' of Wigner-Smith de-

u (NTI2)v lay times of the reflection matrices. The transmission block
= . . (3D  of
—i(\T12)u iv
The first index of the matrixXJ is decorated by the transmis- ds . o o~
sion amplitudes, hencd relates the scattering states to the E_'U O diag(7,7")0U (38)

transmission channelgach transmission channel is charac-
terized by two vectors: a row af that connects it to the
scattering states on the left and a rowoathat connects it to
the scattering states on the right

corresponds to

The Wigner-Smith time-delay matrix of the total scatter- [v'( ﬁ011+ 2i021)~7011u]nm
ing matrix is Thm= R€ 20T VT)
Q= —iSTj—j=UTQ’U, (32) +Re[vTOz{T’(OEzJ—ﬂ2i012)UJnm_ @9
2(u™NT0) o
Q'—_iU*d_UT_id_UUT (33 . - .
- do do = - Note that the separatiof23) of the transmission delay time

into two contributions that only depend on the incident or the

From the unitarity ofU is follows thatQ’ is real and sym- detected mode is not evident from Eg9) [it follows, how-
metric, and hence diagonalized by an orthogonal matrixever, from Eq.(37)].

which we write in block form The main conclusion from Eq39) is that one cannot
neglect the matrices;», 0,;. That they appear here dem-

011 Ogp onstrates that the reflection and transmission probleniNfor
2(021 022)- (349 >1 are not directly related. It is tempting to interpret the

additional fluctuations from these matrices as the origin of

In this block form we denote the set of eigenvalues a§h3| thJrz?ntitthin Eg'(zg)' g ntensitv-weighted
diag(?fr’). The matrix O diagonalizes the Wigner-Smith N mne next SUbsection We ciscuss an Intensity-weighte

matrix Q on the basis of transmission channels, giverib combination of all transmission delay times that does not
' 9 y depend oro;, ando,;.

and hence relates the transmission channels to the eigenvec-
tors of the Wigner-Smith matrix.
It is consistent to assume thatis almost block diagonal, = D. Weighted delay time and interpretation of long reflection

with off-diagonal element®;,, 0, of order \T,. From delay times
Q'=0diag(r,7')O" we indeed obtain under this assump-  The matrix O, Eq. (34), carries the correlations of the
tion the relations transmission channels and the eigenvectors of the Wigner-

Smith matrix(“delay-time channels}. A suitable object that
captures the essence of these correlations can be formed with
help of the intensity-weighted delay times

T

~ u
011707;=2 Imu* o (35
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07
0.6
0.5
04
03
02
01}

P(W) N(N+1)y

W/ N(N+1)y

FIG. 4. Distribution of intensity-weighted combinatidd of all
transmission delay time for multichannel waveguides vtk 2
(full dots), N=5 (open dotg andN=10 (squares from the nu-
merical simulation. The full curve is distributid®(W,,.,), EQ. (44),
of the upper boundV,,,,. The dashed curve is the result fir
=10 if the matriceso,; and 05, in Eq. (42) would be random
orthogonal matrices.

Im(dty,/dw)t?,
m trett
Uim Uin
:Imd_wu;.cm|vln|2+Imd_wvfn|u1m|21 (40)

PHYSICAL REVIEW E64 026606

[N(N+1)y]? N(N+1)y
max max
N(N+1 N(N+1
«|Ke ( )y 1( ( )7” @
Wmax Wmax
of the mean
1 ~ ~r
Winax= E (m+ Tl) (45

of the two largest delay times;, 7, which follows from
Eq. (13). Figure 4 also shows the distribution functioroif;
ando,, would be random orthogonal matrices, which would
result in much smaller value#/= yN.

The quantityW,,,, is an upper bound odV. That the dis-
tributions of both quantities are very close and require a large
overlap,

0,=0;=1, (46)

of the dominant transmission channel with the channel with
the largest delay time, hence, that both channels are strongly
correlated. The correlation is strongest for lakyg,.., be-

where the last equality holds in the localized regime. Thecause the tails of the two distributions coincide very well.

sum of all weighted delay times can be written as

tr(dt/dw)t’
W=Im——M—. (41)
trt't

From Eq.(38) we find the representation

~ T ~ T
_ tr7(011701;+ 0257 02))
2trT

1 ~ T ~r AT
= 5[0117'0114' 0257 0511, (42

Upon reflection, the strong correlations of the dominant
transmission channel and the channel with the largest delay
time can be seen as one reason why the single-mode delay
times 7, are of orderyN(N+ 1), which corresponds t¥
=Z=vyN(N+1)/2 in Eq.(28).

V. CONCLUDING REMARKS

In this paper we have investigated the statistical properties
of the transmission delay time in the presence of wave
localization. Most of the analysis relied on the separation of
the delay time into two independent contributionss y
+x', with ¥ and y’ given in Eq.(23). The properties of the
delay time follow then from the distribution function of
and y'. This distribution does not depend on length in the
localized regime. It is given as an exact analytic expression

where the first diagonal element is picked out because thgyy N=1 in Eq.(21) and in approximate form foN>1 in
transmission eigenvalug; is much larger than the other gq (29).

transmission eigenvalues. Henééindeed carries informa-

We also have demonstrated in Sec. IV D that the domi-

tion of the correlations between the dominant transmissiomant transmission channel is closely related with the channel
channel and the delay-time channels, which can be quantifiegssociated to the largest Wigner-Smith delay time. Large re-

by the overlaps
0=[011)si, 0/ =[0p]y;- (43

Note thatW does not involve the off-diagonal blocks, and
0,, of O that couple both ends of the waveguide, and Wat
is manifestly positive.

flection delay times can hence be interpreted as exploration
of regions deep inside the waveguide, which are only acces-
sible via the dominant transmission channel.

The separation rulé€23) entails strict correlations among
the delay times of a single realization, which are related by
Eq. (24). These relations become invalid when absorption
dominates over localizatiofthen diffusion theory becomes
applicable again It would be interesting to investigate

The distributionP (W) is plotted in Fig. 4 for some values whether the departure from ER4) qualifies as a practical
of Nin units yN(N+1). These distributions are close to the tool that distinguishes these two distinct mechanisms of

distribution

wave attenuation.
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20ek’ (NWO) and by the “Stichting voor Fundamenteel &rieeﬁte for the quasiballistic motion through the small seg-
Onderzoek der Materie(FOM). Now we have to determine the elementanddu/dw for
the composed system of lengtht+ L. From the composi-
tion rule (25) and the reduced form=uv /T, Eqg. (9), we
The distributionP(y) for N=1, Eq. (19), follows from  obtain in the localized regime the prescription
the requirement of stationarity on its evolution equaii@®).
In this Appendix we briefly sketch how the evolution u(L+6L)=u(1l+iA+i ReBu?*—al2—b/2), (A3)
equation is derived within one-dimensional scaling theory
[7,29,33,34, adapted to the dynamical problem along the du du
lines of Refs[23,35,38. d—w(L+ oL)= d—w(1+iA+i Re Bu?—a/2—b/2)
In this approach we study the evolution gf{L+ L)
=x(L)+ 6x as the length of the waveguide is increased SL du
gradually, by adding a thin slice of lengthL. Within an +uli——+2iReBug—/, (Ad)
ensemble of random disorder, the evolution of the distribu-
tion function is then governed by a Fokker-Planck equationw

APPENDIX: DISTRIBUTION FUNCTION OF x FOR N=1

here we denoted for simplicity the initial valugL)=u.
The increment o5y is then given by
5L0P— i (68 )+l i (6x*)|P(x). (A1)
oL X " 2 ) . 5—5L+2RBdu A5
X= < eBug—, (A5)
In order to show that EqtA1l) becomes Eq(20), it re-
mains to calculate the momentgy) and(dx?). The scat-  and the moments are
tering matrix elements

2)(2

sL
ri=—r*=iB, ti=tj=1+iA—(a+b)2, (A2) (0)="g (x)=2bx’=—-—.  (A§)

[1] A. Ishimaru,Wave Propagation and Scattering in Random Me-[17] A. Lagendijk, J. Gmez Rivas, A. Imhof, F. J. P. Schuurmans,

dia (Academic, New York, 1978 and R. Sprik, inPhotonic Crystals and Light Localization in
[2] P. Sheng,Scattering and Localization of Classical Waves in the 21st CenturyVol. 563 of NATO Science Serigedited by
Random MedigWorld Scientific, Singapore, 1990 C. M. Soukoulis(Kluwer, Dordrecht, 2001
[3] R. Berkovits and S. Feng, Phys. R&28 135(1994). [18] B. A. van Tiggelen, P. Sebbah, M. Stoytchev, and A. Z. Gen-
[4] S. John, Phys. Todag4(5), 32 (1991. ack, Phys. Rev. (59, 7166(1999.
[5] P. W. Anderson, Phys. Re%09, 1492 (1958. [19] A. M. Jayannavar, G. V. Vijayagovindan, and N. Kumar, Z.
[6] B. Kramer and A. MacKinnon, Rep. Prog. Physs, 1469 Phys. B: Condens. Mattet5, 77 (1989.

[20] J. Heinrichs, J. Phys.: Condens. Matger1559(1990.

[21] A. Comtet and C. Texier, J. Phys.30, 8017(1997.

[22] C. Texier and A. Comtet, Phys. Rev. LeB2, 4220(1999.

[23] C. W. J. Beenakker and P. W. Brouwer, PhysicdAmster-
dam 9, 463(2001).

(1993.
[7] C. W. J. Beenakker, Rev. Mod. Phy&9, 731(1997).
[8] N. Garcia and A. Z. Genack, Phys. Rev. L&, 1850(1991).
[9] A. Z. Genack and N. Garcia, Phys. Rev. L&, 2064(1991).
[10] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, [24] H. Schomerus, K. J. H. van Bemmel, and C. W. J. Beenakker,
Nature(London 390, 671(1997. Europhys. Lett52, 518 (2000.
[11] F. Scheffold, R. Lenke, R. Tweer, and G. Maret, Nat(ren- [25] H. Schomerus, K. J. H. van Bemmel, and C. W. J. Beenakker,

don) 398 206 (1999. Phys. Rev. E53, 026605(2002.
[12] A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature [26] C. W. J. Beenakker, e-print cond-mat/0009061v2.
(London 404, 850 (2000. [27] C. J. Bolton-Heaton, C. J. Lambert, V. I. Fal’ko, V. Progodin,
[13] E. P. Wigner, Phys. Re®@8, 145 (1955. and A. J. Epstein, Phys. Rev. @, 10 569(1999.
[14] F. T. Smith, Phys. Re\118 349 (1960. [28] A. D. Mirlin, Phys. Rep.326, 259 (2000.
[15] Y. V. Fyodorov and H.-J. Sommers, J. Math. Ph$8, 1918  [29] P. A. Mello and A. D. Stone, Phys. Rev. 8}, 3559(1997).
(1997. [30] A. Edelman, Linear Algebr. Appl159 55 (199J).
[16] A. Z. Genack, P. Sebbah, M. Stoytchev, and B. A. van[31] B. White, P. Sheng, Z. Q. Zhang, and G. Papanicolaou, Phys.
Tiggelen, Phys. Rev. Let82, 715 (1999. Rev. Lett.59, 1918(1987.

026606-8



TRANSMISSION DELAY TIMES OF LOCALIZED WAVES PHYSICAL REVIEW E64 026606

[32] M. Titov and C. W. J. Beenakker, Phys. Rev. L&6, 3388 290(1988.

(2000. ) [35] C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer,
[33] O. N. Dorokhov, Pis'ma Zh. ksp. Teor. Fiz.36, 259 (1982 Phys. Rev. Lett76, 1368(1996.

[JETP Lett.36, 318(1982]. [36] P. W. Brouwer, Phys. Rev. B7, 10 526(1998.

[34] P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phyid.Y.) 181,

026606-9



