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Transmission delay times of localized waves
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We investigate the effects of wave localization on the delay timet ~frequency sensitivity of the scattering
phase shift! of a wave transmitted through a disordered waveguide. Localization results in a separationt5x
1x8 of the delay time into two independent but equivalent contributions, associated to the left and right end
of the waveguide. ForN51 propagating modes,x andx8 are identical to half the reflection delay time of each
end of the waveguide. In this case the distribution functionP(t) in an ensemble of random disorder can be
obtained analytically. ForN.1 propagating modes the distribution function can be approximated by a simple
heuristic modification of the single-channel problem. We find a strong correlation between channels with long
reflectiondelay times and the dominant transmission channel.
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I. INTRODUCTION

In this paper, we characterize localization of random
scattered waves by means of a dynamical quantity, the d
time t.

Wave localization is perhaps the most striking effect
multiple random scattering@1–4#—in a waveguide geom
etry, it results in the exponential attenuation of the transm
ted intensityI (L)}exp(22L/j) for lengthsL of the wave-
guide greater than the localization lengthj, even in the
absence of absorption. Localization was first investigated
mesoscopic systems@5–7#. Recently the undertaking of it
realization and observation for microwaves@8,9# and optical
waves @10# has attracted a lot of interest. It is still und
debate@11,12# whether some of these observations are du
localization or absorption.

The delay timet5df /dv is the frequency sensitivity o
a scattering phase shiftf, and has been identified by Wigne
@13# as a measure of the exploration time of the scatter
region~see also Refs.@14,15#!. Recent experiments have su
ceeded in the direct measurement of the so-called sin
mode delay time for specified incident and detected mod
both for microwaves@16# and optical waves@17#. ~The at-
tribute ‘‘single-mode’’ means here that only one of theN
propagating modes is excited, and only one mode is sele
for detection, but does not imply any restriction ofN itself.!
These experimental efforts have promoted the single-m
delay times to quantities of interest in their own right. T
measurements have been performed with waveguides sh
than the localization length, and their outcome can be s
cessfully described by diffusion theory@18#. That does not
mean that wave localization is of no interest in this contex
note that the experiments on localization and delay tim
have been performed on the same sorts of sample, by
same groups.

Theoretical work on the localized regime has mostly co
centrated on the delay times of the reflected signal@19–26#.
Some aspects for the transmission delay-time problem f
single propagating channel (N51) have been studied in Re
@27#, where it was found that the distribution oft has a
universal quadratic tail,P(t)}t22, for large t. This tail
eventually crosses over into a log-normal tail, at some la
1063-651X/2001/64~2!/026606~9!/$20.00 64 0266
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valuetc that increases with the system length—even thou
the tail is irrelevant for the direct experimental or numeric
investigation of the distribution itself, it is reflected in phys
cal properties of mesoscopic systems~for a review see Ref.
@28#!. Reference@27# also addressed the properties of
delay-time weighted by the transmission coefficient, which
relevant for the conductance of mesoscopic wires.

In this work we investigate the distribution of the tran
mission delay timet in the localized regime. It will turn out
that the transmission and reflection problem are closely
lated forN51. The transmission delay time is then the me
of the reflection delay times of the both ends of the wa
guide, and the exact form of the limiting distribution fun
tion P(t) for L→` can be found analytically. At finite
length the result is applicable in the range 0,t,tc . Be-
causetc is very large in the localized regime, this covers t
range of delay times that is relevant for direct experimen
observation and comparison with numerical simulations.

For N.1 there is still only one relevant transmissio
channel. Consequently, once again localization results
separation of the transmission delay time into two indep
dent but equivalent contributions from both ends of t
waveguide. Moreover, one of the contributions only depe
on the excitation mode, while the other only depends on
detection mode. However, the transmission delay times
no longer directly related to the reflection delay times. Ne
ertheless it is possible to obtain the distribution function
single-mode delay times approximately by a heuristic mo
fication of the single-channel problem.

Although there is no direct relation to the reflection pro
lem for the individual single-mode delay times andN.1,
there exists an intensity-weighted combination of all de
times that is more closely related to the reflection proble
This combination involves the orthogonal transformati
matrix from the basis of transmission channels to the eig
vectors of the Wigner-Smith time-delay matrix. From o
numerical simulations we find a strong correlation of t
dominant transmission channel and the channel with the l
est Wigner-Smith delay time.

The paper is organized as follows. In Sec. II we provi
the necessary background material that will be used late
©2001 The American Physical Society06-1
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H. SCHOMERUS PHYSICAL REVIEW E 64 026606
in the investigation of the transmission delay times. T
includes a short review of the diffusive regime and the
flection delay times in the presence of localization. In Sec.
we discuss the caseN51 of a single-channel waveguide an
calculate the distribution function of the transmission del
time analytically. Section IV is devoted to waveguides w
more than one propagating channel. We will first discuss
single-mode delay times and compare the distribution fro
numerical simulation with the analytic expression that ari
from the heuristic approximation. Then we turn to t
weighted combination of all delay times and use it to inv
tigate the relation of the dominant transmission channel w
the channel associated to the largest reflection delay tim

II. BASIC CONCEPTS

A. Waveguide geometry

Figure 1 depicts a quasi-one-dimensional wavegu
~length L much larger than the width! that is filled by a
medium with randomly placed scatterers~mean free pathl ).
We assume that there is no absorption and no inelastic s
tering inside the waveguide, and consider a monochrom
scalar wave~disregarding polarization! for simplicity. Also
we assume that time-reversal symmetry is preserved, a
appropriate for the propagation of light in absence
magneto-optical effects.

The numberN of propagating modes at frequencyv
equals the number of transversal excitations inside the w
guide, and is given byN5pA/l2 for a waveguide with
openings of areaA ~herel5c/v is the wavelength andc is
the propagation velocity of light!. In the numerical simula-
tions we will work with a planar waveguide of widthW
!L, whereN52W/l. For a unified description we intro
duce the scattering timeg5a l /c, with the coefficienta
52 (p2/4, 8/3) for one-dimensional~two-dimensional,
three-dimensional! scattering inside the quasi-one
dimensional waveguide, and the relative lengths5a8L/ l ,
with a851/2 (2/p, 3/4). The localization length is the
given byj5(N11)l /a8.

B. Scattering formalism

The numberN of propagating modes inside the wav
guide corresponds to the number of independent incid
modes close to each opening of the waveguide. In exp

FIG. 1. Quasi-one-dimensional waveguide filled by a disorde
medium and illuminated by a monochromatic plane wave. The s
tered wave acquires a scattering phase shiftf. We investigate the
frequency sensitivity~delay time! t5df/dv for the transmitted
wave.
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mental practice these modes can be chosen as plane w
with discretized propagation direction, and mode selectio
realized by the choice of the positions of source and detec
In such a single-mode experiment, the waveguide is pro
by external illumination with amplitudeCm in modem, and
the transmitted or reflected signalFnm is detected in moden,
with n,m51, . . . ,2N. ~The modes with index n,m
51, . . . ,N are associated with the left end of the waveguid
while the remaining modes pertain to the right end of t
waveguide.! The numbers

Snm5Fnm /Cm ~1!

form the elements of the 2N32N scattering matrix

S5S r t 8

t r 8
D , ~2!

with four N3N dimensional blocks that correspond to r
flection or transmission with the incident radiation from t
left (r , t) or from the right (r 8, t8). The scattering matrix
is unitary due to flux conservation in the absence of abso
tion, and only depends on one frequency because there
no inelastic processes. Furthermore, the scattering matr
symmetric due to time-reversal symmetry, hencet85tT, r
5r T, andr 85r 8T.

A useful representation of the scattering matrix is the p
lar decomposition@7#

S5S uT 0

0 vTD S A12T AT
AT 2A12TD S u 0

0 v D , ~3!

with unitary matricesu and v and the diagonal matrixT
5diag(T1 , . . . ,TN) of transmission eigenvalues~eigenval-
ues of t†t). For convenience we order them by magnitud
T1.T2.•••.TN .

C. Intensity and delay time

The elements of the scattering matrix can be written a

Snm5AI nm exp~ ifnm!, ~4!

whereI nm is the detected intensity for unit incident intensi
andfnm is the scattering phase shift. The single-mode de
time is defined as the derivative of the scattering phase s
with respect to frequency,

tnm5
dfnm

dv
5Im Snm

21dSnm

dv
. ~5!

Its interpretation as an exploration time of the medium ste
from the short-wavelength limit. The phase can then be
proximated by the classical actionScl of trajectories~there
may be several! that satisfy the boundary conditions of th
incident and detected modes. According to classical mech
ics, the derivativedScl /dv of the phase with respect to fre
quency ~energy! equals the classical propagation tim
through the medium.

d
t-
6-2
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D. Ballistic case

In the ballistic regimes!1 the wave is transmitted with
out any attenuation, and the modes can be chosen easily
that each incident modem is strictly associated with a trans
mitted moden8(m), namely, by using the reflection symm
try of the waveguide~exchanging left and right!. The inten-
sity is then given byI nm5dnn8 , and the delay time istnm
5dnn8L/cm , wherecm is the longitudinal propagation veloc
ity in modem. The average over all modes is^L/cm&5gs.

E. Diffusion theory

Diffusion theory applies when the lengthL of the wave-
guide exceeds the mean free pathl but is less than the local
ization lengthj. The fluctuations of the intensityI nm for
given m and varyingn result in a speckle pattern of brigh
and dark spots, which is described by the Rayleigh distri
tion

P~ I nm!5
1

^I &
exp~2I nm /^I &!. ~6!

The mean intensity per mode is^I &5^T&/N in transmission
and ^I &5(12^T&)/N in reflection, where@7#

^T&5
1

N
^tr t†t&5~11s!21 ~7!

is the mean transmission probability. For the special casn
5m in reflection the mean intensity doubles due to coher
backscattering@29#. The speckle pattern can also be und
stood from the uniform distribution of the matricesu andv
in the group of unitary matrices U(N). For largeN, the ele-
ments ofu and v can be considered as random Gauss
numbers with variancê uulmu2&5^uv lmu2&51/N, and the
Rayleigh distribution~6! follows from the central-limit theo-
rem.

The distribution function of the delay time is given b
@16,18#

P~tnm!5
Q

2^t&
@Q1~tnm /^t&21!2#23/2. ~8!

In transmissionQ52/5 and^t&5gs2/3, while in reflection
Q52s/5 and^t&52gs/3 ~for ballistic corrections in reflec-
tion, see Ref.@25#!.

F. Localized regime

In the localized regimeL*j the transmission eigenvalue
Tn become exponentially small, with well-separated, se
averaging exponents2^ ln Tn&/L52n/j. Transmission is
dominated by the transmission channel with eigenvalueT1,
which is exponentially larger than all the other transmiss
eigenvalues. In terms of the polar decomposition~3!,

tnm5AT1v1nu1m⇒I nm5T1uv1nu1mu2. ~9!

For largeN the complex numbersv1n andu1m again can be
considered as Gaussian random numbers. For fixed inci
02660
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modem and within a given disorder realization~fixed T1),
this results again in the Rayleigh distribution~6! for I nm ,
with ^I &5T1uv1mu2. If one also averages over the incide
mode, however, one finds

P~ I nm!5
2N2

T1
K0~2NAI nm /T1!, ~10!

with K0 a modified Bessel function of the second kind. Th
deviates from the Rayleigh law, obviously because the c
tral limit theorem no longer holds due to the large relati
differences between the transmission eigenvalues. The
flected intensitiesI nm , however, still follow the Rayleigh
distribution with ^I &51/N, since they are governed by th
nonfluctuating reflection eigenvaluesRi512Ti'1.

Because transmission becomes negligible, the reflec
matricesr 5uTu andr 852vTv become unitary. The single
mode delay times of reflection can then be related to
Wigner-Smith delay timest̃ i , t̃ i8 , which are the eigenvalue
of the Wigner-Smith matrices

q52 ir †
dr

dv
5u†S 2 Imu*

duT

dv Du,

q852 ir 8†
dr8

dv
5v†S 2 Imv*

dvT

dv D v, ~11!

respectively~for details of the relation refer to Refs.@24,25#!.
The two sets of Wigner-Smith delay times are indepe

dent and equivalent. In terms of the ratesm i5 t̃ i
21 , the joint

distribution function is given by the Laguerre ensemble@23#

P~$m i%!})
i , j

um i2m j u)
i

Q~m i !e
2g(N11)m i, ~12!

where the step functionQ(x)50 for x,0 andQ(x)51 for
x.1. Equation~12! generalizes earlier results forN51 @19–
22# to arbitraryN.

We order the delay times by their magnitude,t̃1. t̃2

. . . . . t̃N . Of special interest is the largest delay timet̃1,
which is known to dominate the statistics of the reflecti
delay times@24,25#, although to a lesser extent thanT1 de-
termines the transmitted intensity. Its distribution follow
from a result by Edelman@30# for the smallestm in the
Laguerre ensemble and is given by

P~ t̃1!5
gN~N11!

t̃1
2

exp@2gN~N11!/ t̃1#. ~13!

The mean^t̃1& diverges because of the quadratic tail f
large t̃1. These large fluctuations are a signature of locali
tion @26,27,31,32#, and have been interpreted as explorati
of the localized regions deep inside the waveguide. Our
sult for the transmission delay time will support this inte
pretation: We will see in Sec. IV D that the correspondi
eigenvector of the Wigner-Smith matrix is correlated w
the dominant transmission channel.
6-3
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III. SINGLE-CHANNEL WAVEGUIDE

The distribution of the transmission delay timet12 for a
single propagating mode (N51) has been investigated pre
viously in Ref.@27#, where it was found thatP(t12)}t12

22 for
large t12. In this Section we will calculate the distributio
function analytically, for allt12.

For N51, the scattering matrix is a 232 matrix, hence
the transmission and reflection elementst5uvAT, r
5u2A12T, and r 852v2A12T reduce to complex num
bers, while the matricesu, v, of the polar decomposition ar
now unimodular complex numbers. The single-channel c
is special because the transmission delay time

t125Im u21
du

dv
1Im v21

dv
dv

5
t111t22

2
, ~14!

is directly related to the reflection delay times

t115Im r 21
dr

dv
52 Imu21

du

dv
, ~15!

t225Im r 821
dr8

dv
52 Imv21

dv
dv

. ~16!

The relation holds for all lengths~it does not require local-
ization!, and can also be derived from the condition of u
tarity of the scattering matrix,

rt * 1tr 8* 50⇒ d

dv
~rt * 1tr 8* !50. ~17!

It is convenient, also in view of the caseN.1 to be
discussed in Sec. IV, to introduce the quantities

x5Im u21
du

dv
, x85Im v21

dv
dv

. ~18!

In the localized regime, the reflection delay times are de
mined by scattering in nonoverlapping regions close to e
end of the waveguide. Hencex andx8 become independen
and their joint distribution functionP(x,x8)5P(x)P(x8)
factorizes. The reflection delay timest1152x, t2252x8

equal the Wigner-Smith delay timest̃1 , t̃18 , respectively.
The function

P~x!5
g

x2
exp~2g/x!Q~x!, ~19!

@and equivalentlyP(x8)# hence follows from the Laguerr
ensemble, Eq.~12!, for N51. The derivation in the frame
work of one-dimensional scaling theory is briefly recapi
lated in Appendix A.P(x) eventually is determined by th
requirement that it becomes independent of length in
localized regime, which results in the stationarity conditio

gc
]P

]L
5

]

]x S 2g1
]

]x
x2D P50. ~20!
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In Sec. IV B we will propose a slightly modified version o
this equation for the caseN.1.

From Eq.~19!, the distribution of the transmission dela
time t125x1x8 is then found by integration,

P~t12!5E
0

t12
dx

g2

x2~t122x!2
exp@2g/x2g/~t122x!#

54
g2

t12
3

expS 2
2g

t12
D FK0S 2g

t12
D1K1S 2g

t12
D G . ~21!

In Fig. 2 this prediction is compared with the result of
numerical simulation of random scattering in a planar sing
channel waveguide. In these simulations the Helmho
equation is solved on a square lattice. In terms of the lat
constanta, the width of the waveguide isW53 a, and the
wavelength isl54 a, giving rise to a single propagatin
mode. Disorder is modeled by a random on-site poten
with localization lengthj54l 554a. The scattering rateg is
determined from the ballistic regime. We find perfect agre
ment between Eq.~21! and the numerical simulations, with
out any free parameter.

IV. MULTICHANNEL WAVEGUIDE

Now we turn to the caseN.1 of more than one propa
gating mode in the waveguide. We first show that the de
times separate into two independent contributions and
cuss some consequences. Then we turn to the distribu
function P(tnm) and propose an approximation, based on
heuristic modification of the caseN51, which agrees well
with the result of numerical simulations. Finally, we inves
gate the correlation between the transmission channel
eigenvalueT1 and the eigenvector of the Wigner-Smith m
trix with eigenvaluet̃1.

A. Separation rule

For the transmitted intensity it is sufficient to consider t
reduced formtnm5v1nu1mAT1, Eq. ~9!, of the transmission-
matrix elements in the localized regime. Under the additio
assumption~which is validated by the numerical simulation!
that the coefficientsvkn , ukm , kÞ1, do not depend much

FIG. 2. Distribution of transmission delay timet for a single-
channel waveguide. The analytic result~21! ~curve! is compared
with the results of a numerical simulation of random scattering i
single-channel waveguide.
6-4
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more sensitively~by large factors}ekL/j) on frequency than
the elementsv1n andu1m , this form can also be used for th
delay times, which then separate into two contributions,

tnm5xm1xn8 , ~22!

xm5Im
1

u1m

du1m

dv
, xn85Im

1

v1n

dv1n

dv
. ~23!

The contributionxm only depends on the mode indexm
of the incident mode, whilexn8 only depends on the detecte
moden. This gives rise to strong correlations between
delay times for each disorder realization: They obey the
lations

t i j 1tkl5t i l 1tk j . ~24!

The dependence on the mode indices suggests thatx and
x8 are independent and equivalent, and that they are d
mined by scattering within a couple of localization lengt
close to the associated opening. This is also suggested b
fact that xm only depends on the matrixu, while xn8 only
depends on the matrixv. These matrices, on the other han
determine the reflection matricesr 5uTA12Tu'uTu and
r 8'2vTv, which can be considered as independent in
localized regime.~The approximationT50 corresponds to
neglecting the influence of the opposite end of the wa
guide, which is far away!. However, that might be
deceptive—note that althoughu andv give r andr 8, they are
themselvesnot uniquely determined byr and r 8 in this ap-
proximation: e.g., the same reflection matrixr can be ob-
tained fromou, with o an arbitrary orthogonal matrix. Th
matrix u can only be determined uniquely fromr if we also
use the information int, which depends on the opposite en
of the waveguide. We will demonstrate now thatx andx8,
nevertheless, become independent in the localized reg
However, in Sec. IV C we will see how degrees of freedo
which are similar in nature aso reflect in the statistical dis
tribution of the delay times.

In order to demonstrate thatx andx8 are indeed indepen
dent, we cut the waveguide into two parts~associated with
subscriptsi 51,2), still requiring that the lengthsLi@j. The
well-known composition rule

t5t2~12r 18r 2!21t1 ~25!

and the relations 1@T1,i@TkÞ1,i yield

tnm5v1n,2u1m,1AT1, ~26!

T15T1,1T1,2~@~u2* v1
†1u2v1

T!21#11!
2. ~27!

Note thatT1 is indeed real. This givestnm5xm,11xn,28 , i.e.,
xm5xm,1 independent on part 2 andxn85xn,28 independent
on part 1.

B. Distribution of delay times

The considerations in the previous Sec. IV A also sh
that the statistical distribution oft becomes independent o
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length ~‘‘stationary’’! for L@j, because the distribution
P(xm) for length L is identical to P(xm,1) for length L1

,L, and analogously forxn8 .
The stationary distributionP(t) is plotted in Fig. 3, for

N52 andN530 propagating modes in the numerical sim
lations ~corresponding to different widthsW of the wave-
guide!. The distributions collapse onto a single curve wh
the delay times are rescaled by a factorgN(N11). The dis-
tribution is however qualitatively different from the result fo
N51. Most notably, a tail}t12

22 also extends into the regio
of negative delay times, while the delay times forN51 are
strictly positive.

An analytic treatment of the transmission delay-tim
problem for many channels is notoriously difficult. In th
framework of one-dimensional scaling theory, the evoluti
of x couples to all elements ofu anddu/dv, which makes a
complete analytic solution impossible. Inspection of t
complicated full set of evolution equations that appear in t
approach, however, suggests the following approximation
the stationarity requirement ofP(x):

S 2Y1
]

]x
~x21Z2! D P~x!50, ~28!

with the solution

P~x!5
Y exp@~Y/Z!arctan~x/Z!#

2~x21Z2!sinh~pY/2Z!
. ~29!

For Y5g andZ50, the stationarity condition reduces t
Eq. ~20! for N51. For N.1, the appearance ofZ can be
traced back to the additional degrees of freedom
u†du/dv, especially also to the real part of this matrix~the
real part vanishes forN51). This will be further discussed
in the following two subsections IV C and IV D. The facto
Y/Z in the exponent of Eq.~29! determines the asymmetry o
the distribution for positive and negative values ofx.

The full set of evolution equations suggests thatY.Z
.gN(N11)/2, up to numerical factors that cannot be d
rived without solving the original problem. This is also th
order of magnitude oftnm at the border of diffusion and
localization, see Eq.~8!. In Fig. 3 we have plotted the distri

FIG. 3. Distribution of transmission delay timetnm for multi-
channel waveguides withN52 ~open dots! andN530 ~full dots!.
The analytic prediction from Eq.~29! ~curve! with Y5Z5gN(N
11)/2 is compared with the results of a numerical simulation
random scattering in a planar waveguide.
6-5
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H. SCHOMERUS PHYSICAL REVIEW E 64 026606
bution of t5x1x8, which follows from Eq. ~29! for Y
5gN(N11)/2 andZ5gN(N11)/2. The comparison with
the numerical data shows that the numerical factors are c
to unity.

C. Relation to the reflection problem

For N51 we could relate the problem of transmissi
delay-times directly to the problem of reflection delay time
Now we discuss to which extent these two problems
linked for N.1.

Due to its symmetry, the scattering matrix can always
written asS5UTU. In terms of the matrices of the pola
decomposition, we can choose

U5S ~T /2p!1/2u ~p/2!1/2v

2 i ~p/2!1/2u i~T /2p!1/2v D , ~30!

with p512A12T. In the localized regime,U can be ap-
proximated by

U5S u ~AT /2!v

2 i ~AT /2!u iv D . ~31!

The first index of the matrixU is decorated by the transmis
sion amplitudes, henceU relates the scattering states to t
transmission channels~each transmission channel is chara
terized by two vectors: a row ofu that connects it to the
scattering states on the left and a row ofv that connects it to
the scattering states on the right!.

The Wigner-Smith time-delay matrix of the total scatte
ing matrix is

Q52 iS†
dS

dv
5U†Q8U, ~32!

Q852 iU *
dUT

dv
2 i

dU

dv
U†. ~33!

From the unitarity ofU is follows thatQ8 is real and sym-
metric, and hence diagonalized by an orthogonal mat
which we write in block form

O5S o11 o12

o21 o22
D . ~34!

In this block form we denote the set of eigenvalues
diag(t̃,t̃8). The matrix O diagonalizes the Wigner-Smit
matrix Q on the basis of transmission channels, given byU,
and hence relates the transmission channels to the eigen
tors of the Wigner-Smith matrix.

It is consistent to assume thatO is almost block diagonal
with off-diagonal elementso12, o21 of order AT1. From
Q85O diag(t̃,t̃8)OT we indeed obtain under this assum
tion the relations

o11t̃o11
T 52 Imu*

duT

dv
, ~35!
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o22t̃8o22
T 52 Imv*

dvT

dv
, ~36!

o21t̃o11
T 1o22t̃8o12

T 5ReSATu*
duT

dv
1

dv*

dv
vTAT D .

~37!

Comparison with Eq.~11! shows thato11 ando22 diagonalize
the Wigner-Smith matrices of the reflection problem~Sec.
II F!, however, in the special basis of transmission chann
that is not fixed by reflection alone. The matriceso12 ando21
are related to frequency derivatives ofu and v that do not
feature in the reflection problem at all. Moreover, becau
they appear as off-diagonal elements ofO, these matrices
connect the coefficients of the transmission channels fr
one side of the waveguide to Wigner-Smith eigenvectors
reflection from the other side.

According to Eqs.~35! and~36!, the eigenvalues ofQ can
be approximated by the two setst̃, t̃8 of Wigner-Smith de-
lay times of the reflection matrices. The transmission blo
of

dS

dv
5 iU TO diag~ t̃,t̃8!OTU ~38!

corresponds to

tnm5Re
@vT~ATo1112io21!t̃o11

T u#nm

2~vTATu!nm

1Re
@vTo22t̃8~o22

T AT12io12
T !u#nm

2~uTATv !nm

. ~39!

Note that the separation~23! of the transmission delay time
into two contributions that only depend on the incident or t
detected mode is not evident from Eq.~39! @it follows, how-
ever, from Eq.~37!#.

The main conclusion from Eq.~39! is that one cannot
neglect the matriceso12, o21. That they appear here dem
onstrates that the reflection and transmission problem foN
.1 are not directly related. It is tempting to interpret th
additional fluctuations from these matrices as the origin
the quantityZ in Eq. ~28!.

In the next subsection we discuss an intensity-weigh
combination of all transmission delay times that does
depend ono12 ando21.

D. Weighted delay time and interpretation of long reflection
delay times

The matrix O, Eq. ~34!, carries the correlations of th
transmission channels and the eigenvectors of the Wig
Smith matrix~‘‘delay-time channels’’!. A suitable object that
captures the essence of these correlations can be formed
help of the intensity-weighted delay times
6-6
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Wmn5
Im~dtnm /dv!tnm*

tr t†t

5Im
u1m

dv
u1m* uv1nu21Im

v1n

dv
v1n* uu1mu2, ~40!

where the last equality holds in the localized regime. T
sum of all weighted delay times can be written as

W5Im
tr~dt/dv!t†

tr t†t
. ~41!

From Eq.~38! we find the representation

W5
tr T~o11t̃o11

T 1o22t̃8o22
T !

2 trT

5
1

2
@o11t̃o11

T 1o22t̃8o22
T #11, ~42!

where the first diagonal element is picked out because
transmission eigenvalueT1 is much larger than the othe
transmission eigenvalues. HenceW indeed carries informa
tion of the correlations between the dominant transmiss
channel and the delay-time channels, which can be quant
by the overlaps

õi5@o11#1i , õi85@o22#1i . ~43!

Note thatW does not involve the off-diagonal blockso12 and
o21 of O that couple both ends of the waveguide, and thaW
is manifestly positive.

The distributionP(W) is plotted in Fig. 4 for some value
of N in unitsgN(N11). These distributions are close to th
distribution

FIG. 4. Distribution of intensity-weighted combinationW of all
transmission delay time for multichannel waveguides withN52
~full dots!, N55 ~open dots!, and N510 ~squares!, from the nu-
merical simulation. The full curve is distributionP(Wmax), Eq.~44!,
of the upper boundWmax. The dashed curve is the result forN
510 if the matriceso11 and o22 in Eq. ~42! would be random
orthogonal matrices.
02660
e

e

n
ed

P~Wmax!5
@N~N11!g#2

Wmax
3

expS 2
N~N11!g

Wmax
D

3FK0S N~N11!g

Wmax
D1K1S N~N11!g

Wmax
D G ~44!

of the mean

Wmax5
1

2
~ t̃11 t̃18! ~45!

of the two largest delay timest̃1 , t̃18 , which follows from
Eq. ~13!. Figure 4 also shows the distribution function ifo11
ando22 would be random orthogonal matrices, which wou
result in much smaller valuesW.gN.

The quantityWmax is an upper bound ofW. That the dis-
tributions of both quantities are very close and require a la
overlap,

õ1.õ18.1, ~46!

of the dominant transmission channel with the channel w
the largest delay time, hence, that both channels are stro
correlated. The correlation is strongest for largeWmax, be-
cause the tails of the two distributions coincide very well

Upon reflection, the strong correlations of the domina
transmission channel and the channel with the largest d
time can be seen as one reason why the single-mode d
times tnm are of ordergN(N11), which corresponds toY
.Z.gN(N11)/2 in Eq.~28!.

V. CONCLUDING REMARKS

In this paper we have investigated the statistical proper
of the transmission delay timet in the presence of wave
localization. Most of the analysis relied on the separation
the delay time into two independent contributions,t5x
1x8, with x andx8 given in Eq.~23!. The properties of the
delay time follow then from the distribution function ofx
and x8. This distribution does not depend on length in t
localized regime. It is given as an exact analytic express
for N51 in Eq. ~21! and in approximate form forN.1 in
Eq. ~29!.

We also have demonstrated in Sec. IV D that the do
nant transmission channel is closely related with the chan
associated to the largest Wigner-Smith delay time. Large
flection delay times can hence be interpreted as explora
of regions deep inside the waveguide, which are only acc
sible via the dominant transmission channel.

The separation rule~23! entails strict correlations amon
the delay times of a single realization, which are related
Eq. ~24!. These relations become invalid when absorpt
dominates over localization~then diffusion theory become
applicable again!. It would be interesting to investigat
whether the departure from Eq.~24! qualifies as a practica
tool that distinguishes these two distinct mechanisms
wave attenuation.
6-7
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APPENDIX: DISTRIBUTION FUNCTION OF x FOR NÄ1

The distributionP(x) for N51, Eq. ~19!, follows from
the requirement of stationarity on its evolution equation~20!.

In this Appendix we briefly sketch how the evolutio
equation is derived within one-dimensional scaling the
@7,29,33,34#, adapted to the dynamical problem along t
lines of Refs.@23,35,36#.

In this approach we study the evolution ofx(L1dL)
5x(L)1dx as the length of the waveguide is increas
gradually, by adding a thin slice of lengthdL. Within an
ensemble of random disorder, the evolution of the distri
tion function is then governed by a Fokker-Planck equati

dL
]P

]L
5

]

]x S 2^dx&1
1

2

]

]x
^dx2& D P~x!. ~A1!

In order to show that Eq.~A1! becomes Eq.~20!, it re-
mains to calculate the moments^dx& and ^dx2&. The scat-
tering matrix elements

r 152r 18* 5 iB, t15t18511 iA2~a1b!/2, ~A2!
e

in

i,

re

an

02660
-
e
r-

y

-
,

of the slice are given by a Gaussian real numberA with
variance^A2&5a and the complex numberB with ^uBu2&
5b. From ^ur 2u&5dL/2l we obtain the relation to the mea
free pathl 5dL/2b. The derivativedA/dv5dL/c, as appro-
priate for the quasiballistic motion through the small se
ment.

Now we have to determine the elementsu anddu/dv for
the composed system of lengthL1dL. From the composi-
tion rule ~25! and the reduced formt5uvAT, Eq. ~9!, we
obtain in the localized regime the prescription

u~L1dL !5u~11 iA1 i ReBu22a/22b/2!, ~A3!

du

dv
~L1dL !5

du

dv
~11 iA1 i Re Bu22a/22b/2!

1uS i
dL

c
12i Re Bu

du

dv D , ~A4!

where we denoted for simplicity the initial valueu(L)5u.
The increment ofdx is then given by

dx5
dL

c
12 ReBu

du

dv
, ~A5!

and the moments are

^dx&5
dL

c
, ^dx2&52bx25

2x2

g

dL

c
. ~A6!
s,

n-
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